Spectral Medium Effects on Hadronic Densities

Rodolfo I. Gonzalez
University of Texas at El Paso
Dr. Ralf Rapp
Texas A&M University

Outline

- Project goal.
- What particles are we working with?
- Finding particle density.
- Applying a Spectral Function to create a more correct model.
- Applying an in-medium width for the Spectral Function.
- Results / Analysis
- Conclusion
- Acknowledgments

What is the goal of my project?

- The goal of my project is to study the particle density of three particles (i.e. pion, rho meson, and A1 particle) and see how their densities change when a spectral function is applied to try and model density within a medium.
- We hope to find a more accurate model to have a more reliable description for experimental data.

Temperature

- I am only working with temperatures from about 0 to 200 MeV.
- Once 200 MeV is passed it is no longer considered a hadronic gas but more of a possible quark-gluon plasma.
- To put the temperature I am working with in to perspective 1 eV is about 10⁴K which is about 18,000 degrees Fahrenheit. So 1MeV is 10¹⁰K.

Pi Meson (Pion)

Mass of about 140 MeV

d

- Composed of first generation quarks.
- Has a quark- antiquark pair (e.g. up and anti-down or up and anti-up).
- Lightest of the mesons and is instrumental in understanding the effects of the strong nuclear force at low energies.
- Degeneracy is 3

Rho Meson

Mass of about 770 MeV

- Most prominent resonance when two pions interact.
- Has degeneracy of 9, spin 1.

A1 Particle (Meson)

- Mass of about 1230 MeV
- Resonance of a Rho and a Pion.
- Degeneracy of 9, spin 1.

Particle Density

We start with an equation that gives us number of particles for a certain volume and particle density.

Next we solve for n_i since we are looking to find particle density.

With some manipulation we get our new n_i.

$$N = \int d^3x \, n_i$$

$$n_i = \frac{dN}{d^3x}$$

$$n_i = \int \frac{d^3p}{(2\pi)^3} \frac{g}{e^{E_p/T} \pm 1}$$

$$E_p = \sqrt{p^2 + m^2}$$

- N = number of particles
- $n_i = particle$ density
- $d^3x = \text{volume}$
- T = temperature
- g = degeneracy factor
- p = momentum
- E_p = energy of particle depending on its momentum

Plotting Particle Density

For simplification we denote the Bose distribution as such.

We then use spherical coordinates

Our last equation is the equation I use to plot particle density.

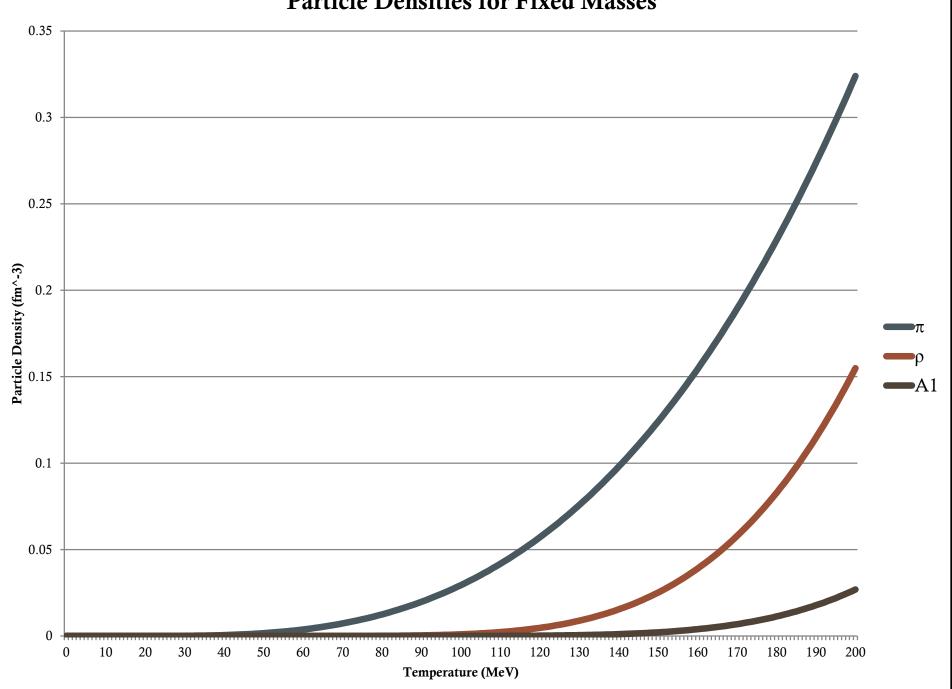
$$f^B(E_p,T) = \frac{1}{e^{E_p/T} - 1}$$

$$n_i = g \int_0^\infty \frac{d^3p}{(2\pi)^3} f^B(E_p, T)$$

$$n_i = \frac{g}{2\pi^2} \int_0^\infty p^2 dp \ f^B(E_p, T)$$

Using FORTRAN, once the integral is found I then converted my units from MeV^3 to fm^-3 (fm= fermi or femtometers, 10^-15m). We can now plot P.D. as temperature increases.

Particle Densities for Fixed Masses



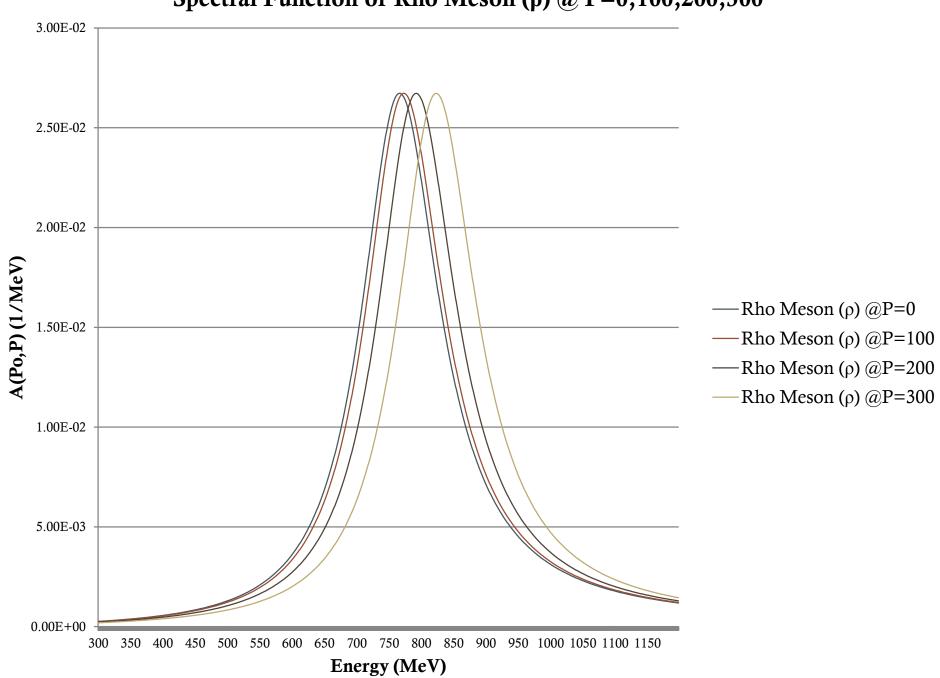
Moving Away From Fixed Masses

- Considered mass to be fixed
- Cant have an accurate model when mass is fixed
- Can make model more correct by adding this spectral function.
- Spectral function dependent upon energy.

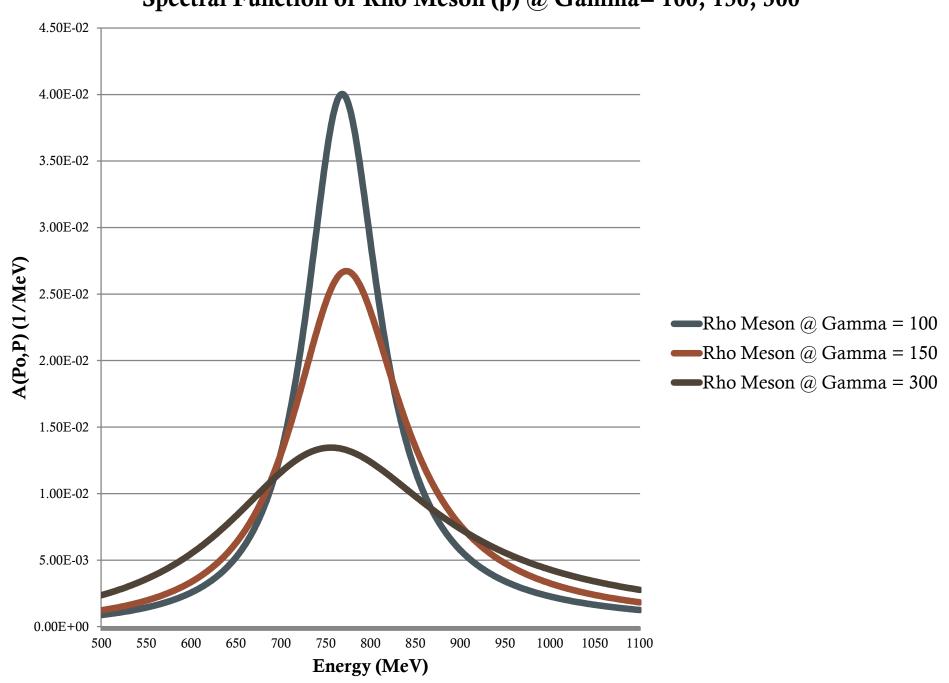
$$A_s(p_o, p) = \frac{\Gamma(p_o)}{\left(p_o - E_p\right)^2 + \frac{\left(\Gamma(p_o)\right)^2}{4}}$$

$$\Gamma(p_o) = \Gamma \frac{p_o}{E_p}$$

Spectral Function of Rho Meson (ρ) @ P=0,100,200,300



Spectral Function of Rho Meson (ρ) @ Gamma= 100, 150, 300



Incorporating Spectral Function

We incorporate the new spectral function with a second integral going from momentum (p) to infinity.

We also must account for the changing energy in Bose Distribution function from being a function of E_p to p_o .

$$n_i = \frac{g}{2\pi^2} \int_0^\infty p^2 dp \int_p^\infty \frac{dp_o}{2\pi} A_s(p_o, p) f^B(p_o, T)$$

$$f^B(p_o,T) = \frac{1}{e^{p_o/T} - 1}$$

Check Model

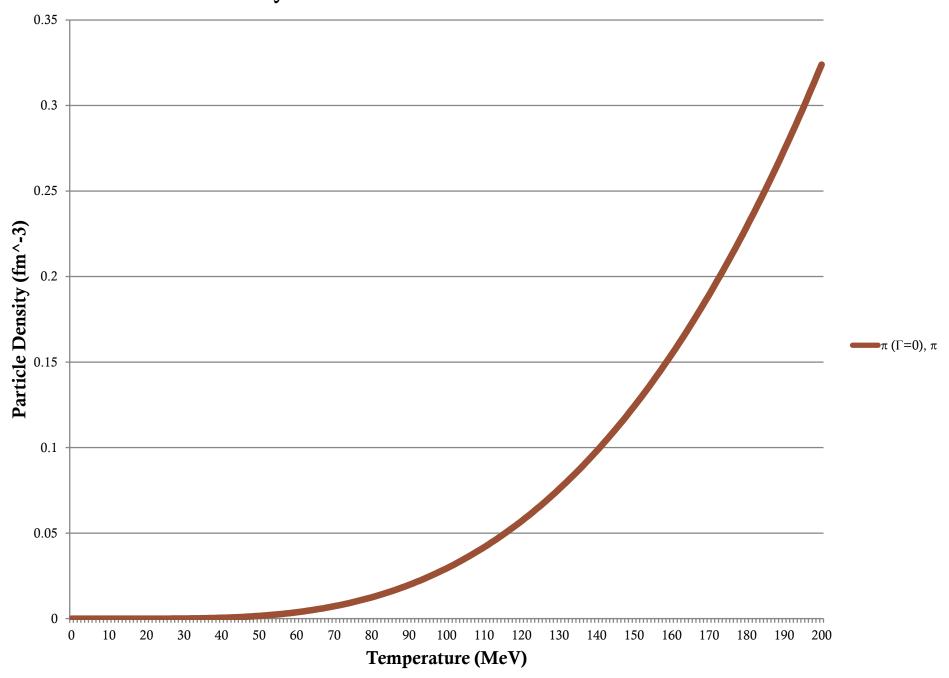
We can check if our new equation is a good model to represent particle density. We just assume that our gamma goes to zero and our spectral function turns into a Dirac delta function.

When integrated you should see that the 2π and $1/2\pi$ cancel out and more importantly all p_o values get replace with an E_p value which gives us our original particle density equation back confirming that our assumptions are correct.

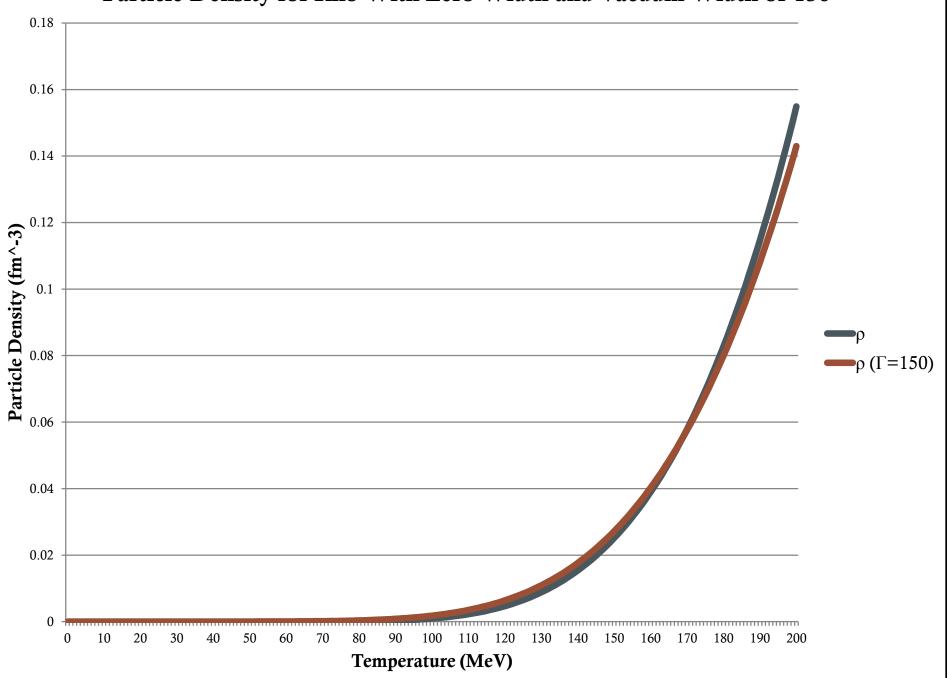
$$n_i = \frac{g}{2\pi^2} \int_0^\infty p^2 dp \int_p^\infty \frac{dp_o}{2\pi} 2\pi \delta(p_o - E_p) f^B(p_o, T)$$

$$n_i = \frac{g}{2\pi^2} \int_0^\infty p^2 dp \ f^B(E_p, T)$$

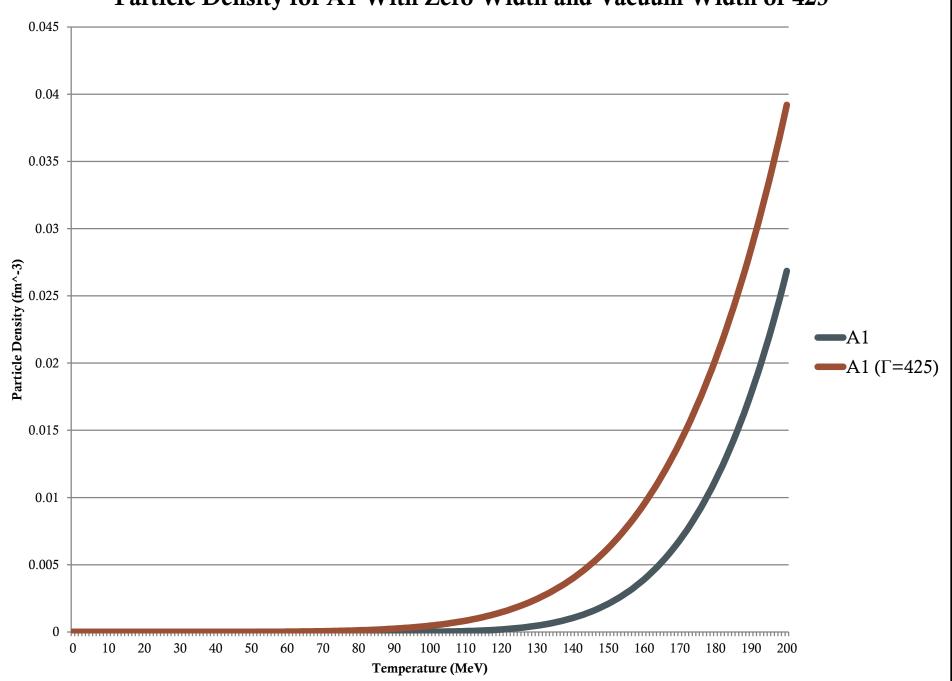
Particle Density for Pion With Zero Width and Vacuum Width of 0



Particle Density for Rho With Zero Width and Vacuum Width of 150



Particle Density for A1 With Zero Width and Vacuum Width of 425

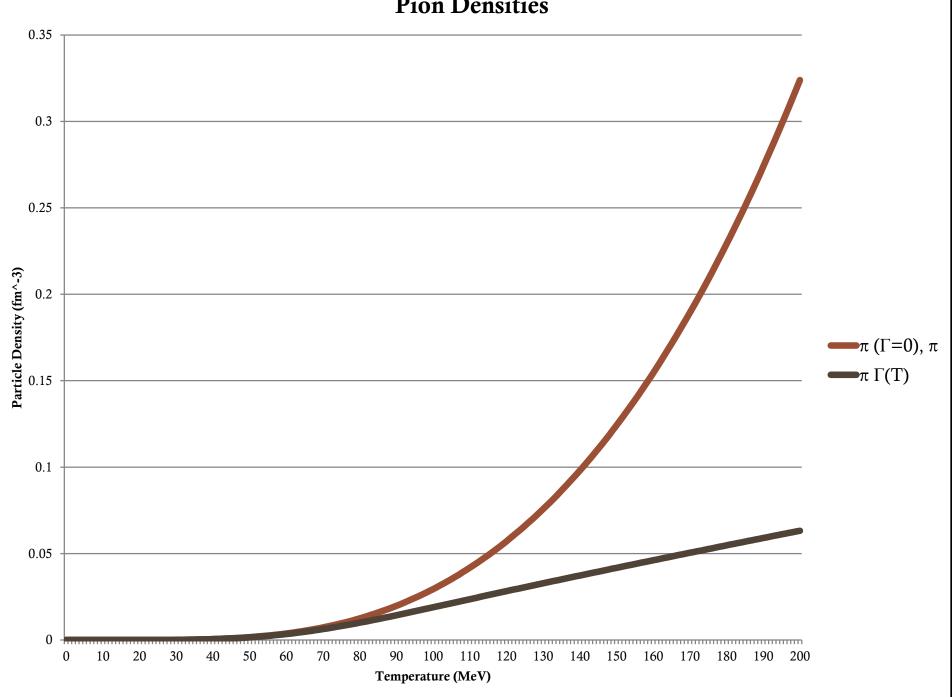


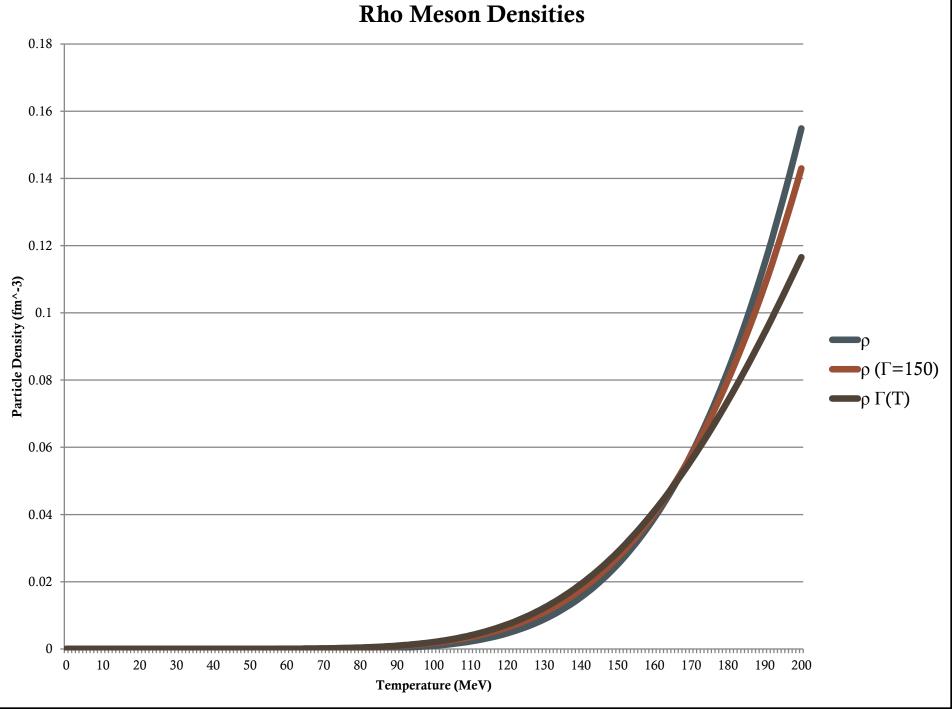
How to Improve Gamma

Vacuum width supplemented with temperature dependent in medium contribution.

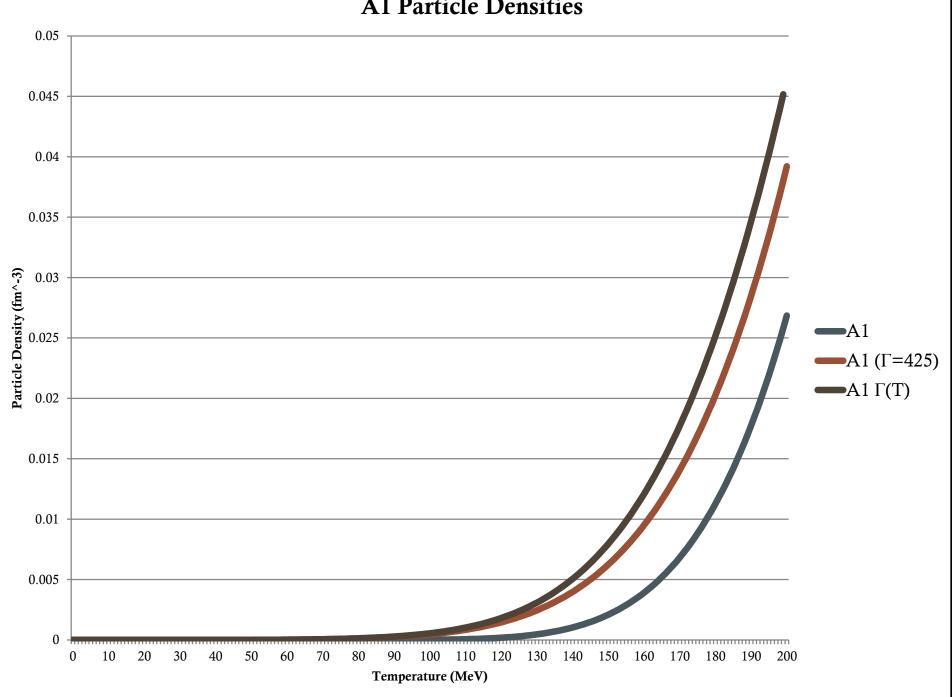
$$A_s(p_o, p) = \frac{\Gamma(p_o)}{\left(p_o - E_p\right)^2 + \frac{\left(\Gamma(p_o)\right)^2}{4}}$$

$$\Gamma(T) = \Gamma_{vac} + \left[\left(\frac{T}{T_o} \right)^3 \left(\Gamma_{med} \right) \right]$$

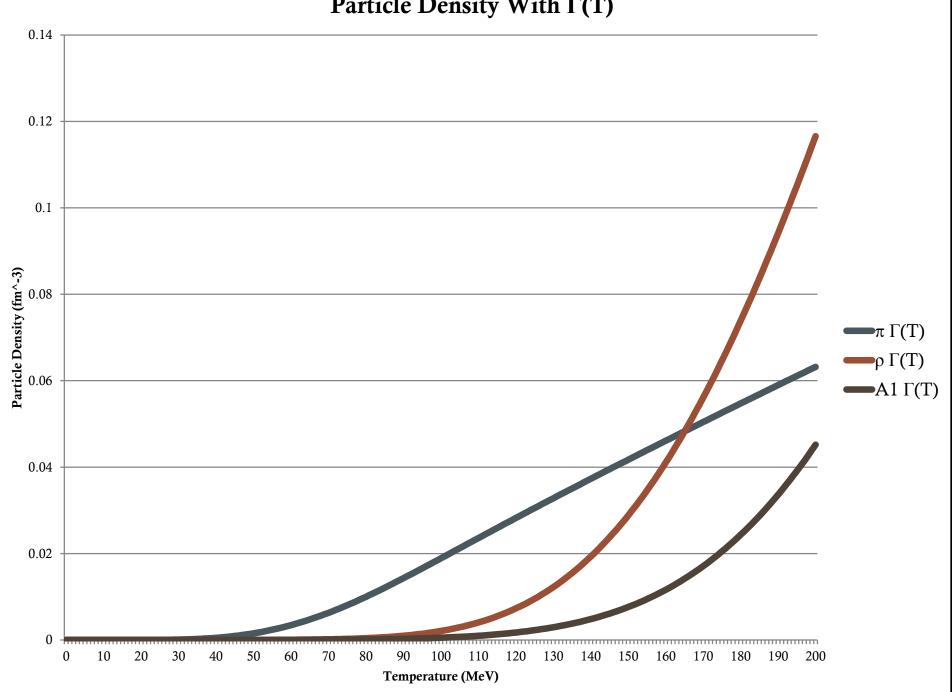




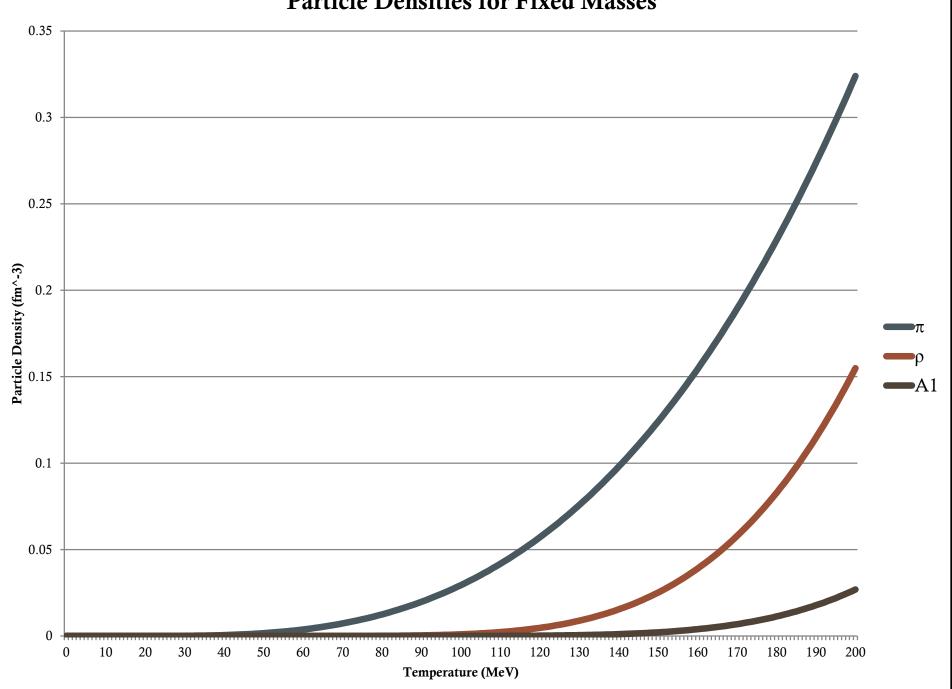
A1 Particle Densities



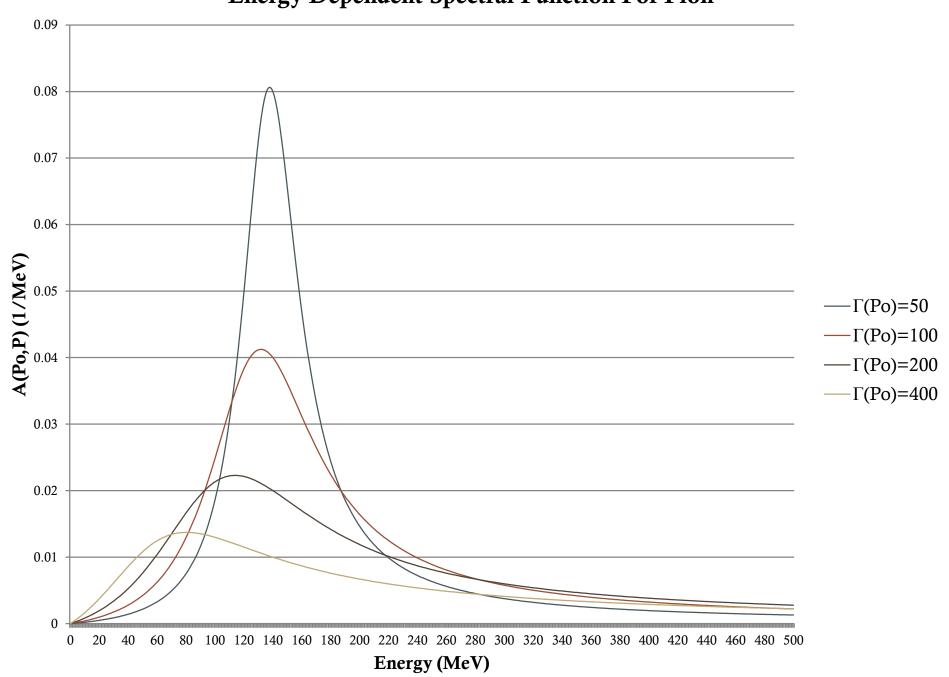
Particle Density With $\Gamma(T)$



Particle Densities for Fixed Masses



Energy Dependent Spectral Function For Pion



Energy Independent Spectral Function For Pion 9.00E-02 8.00E-02 7.00E-02 6.00E-02 A(Po,P) (1/MeV) 5.00E-02 $---\Gamma = 50$ —Γ=100 4.00E-02 —Γ=200 $-\Gamma$ =400 3.00E-02 2.00E-02 1.00E-02 0.00E+0080 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Energy (MeV)

Conclusion

- When thinking about measuring particle density having a fixed mass is not enough to have an accurate model.
- When we incorporate our spectral function with the vacuum width, it has no effect on the pion density but does change the rho meson and the A1 particle.
- However when we modify our gamma to change with temperature and include an in medium width the pion has a significant change but not so much additional change for the other two particles.
- Some unexpected behavior was found when calculating the new densities with the spectral function .It originates from the energy dependence within the spectral function for the widths (gamma).
- Adding this spectral function into my original equation is an important step to a more accurate description of particle density of hadronic matter within a medium.
- It will thus contribute to a more reliable interpretation of experimental data.

Acknowledgments

- Dr. Ralf F. Rapp
- Dr. Paul M. Holher
- Dr. Sherry Yennello
- Funded by National Science Foundation
- Cyclotron Institute